
Pendies for Lops
by Jan Karman

Abstract
Participants of a pensiunfund can simulate the effects of postponing or accelerating their
retirement date, exchange of types of their pension, make salary increments and change the
parttime percentages. It was initially designed for PR-purposes, but now it’s also used in our
actuarial department for making quotes for our participants.
The presentation tries to show what a single APL developer can do in 6-8 weeks.
The software can be used as a template to similar implementations for (large) modern
pensionschemes.
Keywords are: 100% APL;layman’s tool;fast and safe development;FUN

The name Pendies for Lops was invented by the researcher of Moret Ernst & Young, Holland
who performed a comparative research on products of its kind in The Netherlands and in
Quebec, Canada. In English you could say: Pension Diskette for Laymen on Pensions.

History
One of the tasks of a pensionfund management is to detect trends in society and in the market in
their field, translate them into comprehensible pieces and in well formulated proposals to the
Board and the Participants Meeting, in order to get them accepted as modifications to the
existing regulations. Pensionfunds used to tend rusty institutions in terms of dictating the
schemes, until 1995. Then a trend to flexibility emerged and the large companies like Philips,
Shell, as well as the Government designed modifications to their schemes in which e.g. the date
of retirement became flexible.
Our management started these “campaigns” in December 1995 with a proposal to the Board.
In February 1996 the rules in general were accepted and a time track had to be settled. There are
quite a few stations to be passed before such proposals turn into “Regulations”. The most
important are the (larger) individual employers (EMPs) involved (in our case a few tens outof a
few hundred), a Committee on Labour conditions Agreements (CLA), the Unions, the
Companies Councils and - at the terminal - the Participants Meeting (PM) and the Founders.
This time the changes were so drastic that we decided to have a diskette for the PC which would
clearly show the impacts of the changes in any individual case. I promised to have a diskette in
four weeks, although I didn’t know how, yet. I called a meeting of the most experienced
programmers in our IT-Dept (for which I have been responsible last 13 years) and asked
volunteers for the job. Nobody stood up. So, I had to do it myself. (You cannot manage to force
people for such a job, that would not work).
The time schedule was very tight, the PM is a yearly meeting at a more or less fixed date in June
and we would allow people to have a two weeks to play with the diskette. Early during the track
it was desired that we should also have a Macintosh-version. The software house who was
supposed to finish this would need 6 weeks. So, end of April was sort of deadline.
On the 22nd of March I had a first version ready for presentation to the CLA (note: based on
preliminary specifications!). The CLA wasn’t content with the new rules and the outcome was
that a big part of the specification had to be changed.
On April 15 the new rules were settled by the Board and on April the 22nd 200 diskettes could
be shipped for testing. The last week of April most of the time left was spend on presentations.
Only some polishing and the installation procedure were left to be done and on May 22 the
individual statements were mailed, together with 8000 diskettes.
The regulations were accepted on June 19 by the PM unanimously.

The nature of a layman’s tool
If you’re building an application for users in your company you can afford some bugs. Even, be
it to a lower degree, a product for developers (like Dyalog APL) can afford some - minor - bugs.

If you’re building an application for laymen in order to avoid hundreds of phonecalls on
questions about the impact of changes of rules on people’s money it better be sterile. Needless to
say that also the installation should be smooth. And last but not least there should be an online
“Help”.

Why APL?
The gadfly-question. Well, I don’t probably have a satisfying answer for most of you.
Speaking for myself the answer is unusually uncomplicated: it’s the only language I can make
decent software in - I’m not a programmer. And since I was the only person left to fix the job it
became APL, one hundred percent APL, that is.

David (Siegel) gave me some hints for sub-headers, which I found very useful.
I’ll follow them globally here after.

How did APL ease our develoment process?
I have no comparison at all. I only know that I can usually finish jobs in APL quickly and neatly.
APL in our department is exclusively my (the dept.manager’s) domain. Production software used
to be done in (generated) COBOL and nowadays in a Uniface / Solid environment. I only discuss
and judge the arguments for purchasing a development tool and leave the rest to the
programmers.

The other thing is that I can read actuarial stuff, as used in practice that is, and I can read and
write APL. So, I could program at the speed of thought - really not a cliché here.
Further I think I can compose rather complex applications pretty well. All together APL worked
out well here and keeps doing so succesfully in hectic situations where (actuarial) computation is
involved.

How did we design our application in a GUI enviornment?
To be honest, this was one of the keys to our success. This is not a place to sell a particular
product, I assume. But I had already some experience with the Causeway GUI-tool, which comes
with the Dyalog APL/W interpreter.
Causeway has a designer by which you can “paint” your screens just by mouse clicking, assign
variable names to objects, telling them how and when to refresh, depending on which change of
what and decorate them.
The designer has an “Event Action Table” (EAT) department, in which you can be a fulltime
dedicated APL-er and a “Data to Watch” (DtW) department. These two departments are
sufficient to design the “whats, whens and hows” of the entire application. The EAT is
“broadcasting” the new values according to the prescriptions in your code and the DtW is
“listening” to this radio (or rather “telegraph” - it’s not wireless) changing subsequently the
display as applicable.

What hurdles did we encounter and how did we overcome them
The first problem was that in such projects there are no written specifications. For the Actuarial
Dept. everything is new also. You even don’t globally know what’s involved.
So, you start from iota zero. In the beginning you only have your general experience with the
métier and your creative fantasy.
What could possibly be in it? How should it look like? And you just start staring at your screen.
There is an old situation and there is new situation. How to come from here to there? Which
variables are involved? Continuously be aware of how stirdy and robust it has to be.
When it came to the code we sat with two people at my desk, our actuary and myself.
He was dictating the hand-written formulae and I was translating his mutterings in APL code.
Who was talking about methods? The things-getting-be-done method. Spinach!
Then, from time to time we had the noisy entering of our Manager: “Could you also add
something for the women who already have the option for leaving at 60?”
Second was the GUI-development tool: Causeway. This is not contradicting the earlier statement.

The Causeway product was very young and my experience with it was little. These two factors
resulted in detecting - sometimes fancied - bugs. I must say that we got excellent support from
Causeway.
Next there was the testing.
As soon as the diskette got some substance everybody in the office was hold to test the program
and was supposed to make reports of it - in the weekend. This is a frustrating part. You will learn
that only one or maybe two outof say 50 are capable to do valuable work. That is, capable of
detecting errors by using the stuff systematically on the one hand, and writing down the
experiences on the other.
Most of them say: “Nice program” or call you every minute with: “This is not working...”
In the end however when there are only two really good testers reports you may assume that 90%
of the bugs were recognized. This testing involves validation of input, order of the cursor
through the screen, consistency in location of the controlls, logic of the menu structure and so
on.
We also asked Causeway - then Adrian & Duncan - to do a “Workspace Health Check”. A
project like this is a NLG 50.000 (2 to 1 $US) operation and it really pays off to have an
outsiders’ judgement. It certainly did in our case.

The sting was in the tail.
We had targeted the diskette for use on Microsoft Windows, then 3.1x. Some users had already
Windows 95. And either those users had sometimes problems with the OS or with the software,
it was sometimes hard to detect. Quite a few had problems with their too light PC in the first
place. We got angry letters from those. Also people called disturbed, complaining that this was
“just pollution of the environment”. One person wrote how I could “have the guts to display
Microsoft logo on the ‘About’ plaquette” (it appeared that his son was studying Computer
Science).

In general, however, the operation was a succes, and the outcome of our initial inquiry was that
80% of the responders were highly satisfied and 10% was explicitly dissatisfied. The remaining
were in between.

How did we distribute our application?
For the installation software part we used WinBatch. In the available version real Windows
unpacking of the files was not possible. We had to make use of a Call to PKUNZIP and this
resulted in a less neat performance of the unpacking. We usually don’t make software for
distribution, so we had no experience with that aspect.
This changed when we moved to InstallShield. The installation looked professional from that
time, but the overhead was far more than with WinBatch: it now needed a second diskette. We
thought it worthwhile nevertheless and we released our Version 2.0. The only difference with
Version 1.0 was the installation tool.
As soon as the diskette was cleared for release a “master” disk was sent to a professional disk
copier, who als took care of the shipping after testing a randomly taken sample. The shutters
carried our logo and it was wrapped in a neat soft plastic cover with some text.
On the label it said: Installation: Run a:\setup.

Continuing story
We were incented by the succes and now we have our Version 3.0 which is quite different from
Version 1.0. The first version was mainly aimed for illustrating individual effects caused by the
changes in our pension scheme and for promoting the fact that we were on the right track in the
pension market, and so doing, try to convince all the institutions involved for the good of it.
Version 3.0 represents the rules of our new pension scheme from an individual point of view. It
can be used by the individual participant when at home, but also by our actuarial staff as an
interactive tool for enlightening the complex matter of pensions to our participants. It also holds
a simple but effective database, controlled by way of a combo box, which makes it also useful for
the personnel departments of our enrolled employers (about 200 now).

Hilversum, The Netherlands, October 17, 1997

